Statistik - Medizinische Statistik

Details

ID 1253011
Dauer 4.0 Tage
Methoden Vortrag mit Beispielen und Übungen.
Vorwissen Allgemeine Kenntnisse der Mathematik
Zielgruppe Forscher/innen und Datenanalysten im Bereich Medizin

Ziele

Datensätze beschreiben

Lernen Sie, mit Lage- und Streuungsmaßen Datensätze zu beschreiben

Zusammenhängen aufdecken

Weisen Sie Zusammenhänge zwischen Datenreihen nach

Statistische Modelle entwickeln

Verwenden Sie Regression, um Daten in Modellen zu erklären

Rechnen mit Wahrscheinlichkeiten

Setzen Sie induktive Statistik für Wahrscheinlichkeiten ein

Hypothesen testen und nachweisen

Sehen Sie, wie Sie Hypothesen über die Grundgesamtheit prüfen

Spezielle medizinische Analysen durchführen

Untersuchen Sie Überlebenszeiten und Risiken sowie Gruppenzugehörigkeit

Übersicht

Dieses Seminar bietet eine Einführung in die medizinische Statistik und richtet sich speziell an die Bedürfnisse der medizinischen Forschung. Es bietet den Teilnehmer/innen anwendungsorientiert Hilfestellung in der Auswahl und Interpretation von Daten und Ergebnissen. Sie lernen die deskriptive und induktive Statistik kennen, beschäftigen sich mit Schätzer, Standardfehler und Konfidenzintervallen oder Testen von Hypothesen und betrachten die Analysetechniken von quantitativen und qualitativen Zielgrößen sowie Zähldaten. Speziell für die Analyse im Medizin-Bereich vermittelt das Seminar Ihnen die Analyse von Überlebenszeiten und Risiken sowie die Themen Klassifikation und Prognose. Das Seminar schließt ab mit der Beurteilung der Zuverlässigkeit von Messungen und speziellen Fragestellungen wie klinischen Studien, epidemiologischen Studien und der Meta-Analyse.

Termine

OPEN
INHOUSE

Zurzeit stehen keine offenen Termine zur Verfügung. Nutzen Sie alternativ die Inhouse‑Option.

Lernen Sie anhand maßgeschneiderter Beispiele und Inhalte – passgenau für Ihre Anforderungen.

Ihre Vorteile im Überblick

  • Flexibles Wunschdatum
  • Maßgeschneiderte Inhalte
  • Intensiver Austausch
  • Hoher Praxisbezug

Themen

  • Deskriptive Statistik nutzen, um Daten zu beschreiben
  • Wahrscheinlichkeitstheorie verstehen und anwenden
  • Zusammenhänge nachweisen und statistische Modelle bauen
  • Eigenschaften von Daten prüfen und nachweisen
  • Spezielle medizinische Analysen durchführen

Beschreibung

Lernen Sie statistische Verfahren anhand von medizinischen Fragestellungen und lernen Sie spezielle Fragestellungen kennen, die bei der medizinischen Forschung auftreten.

Services

  • Mittagessen / Catering
  • Hilfe bei Hotel / Anreise
  • Comelio-Zertifikat
  • Flexibel: Bis einen Tag vorher kostenlos stornieren
Service-Kaffeekanne

Comelio Medien

Noch auf der Suche nach weiterführender Literatur? Entdecken Sie passende Fachbücher in unserem Katalog.

Inhalt

Einführung

Medizinische Statistik als Bestandteil medizinischer Forschung - Population und Stichprobe - Merkmale und Skalenarten

Beschreibende Statistik eines Merkmals

Darstellung der Daten in Tabellen - Grafische Darstellung der Daten: Balkendiagramm, Kreisdiagramm, Histogramm, Polygon, Summenhistogramm, Summenpolygon

Wahrscheinlichkeitstheorie

Grundmodell der Wahrscheinlichkeitstheorie: Zufällige Ereignisse und deren Verknüpfung, Klassische Definition der Wahrscheinlichkeit, Axiomatische Definition der Wahrscheinlichkeit, Rechnen mit Wahrscheinlichkeiten - Zufallsvariablen und ihre Verteilung: Grundbegriffe, Diskrete Zufallsvariablen, Stetige Zufallsvariablen, Verteilungsparameter - Spezielle Verteilungen: Diskrete Verteilungen, Stetige Verteilungen

Schätzung unbekannter Parameter

Punktschätzungen - Bereichsschätzungen: Verteilung von Punktschätzungen, Konfidenzintervalle

Formulieren und Prüfen von Hypothesen

Inhaltliche und statistische Hypothesen: Klassifikation inhaltlicher Hypothesen, Statistische Alternativhypothesen, Statistische Nullhypothesen - Fehlerarten bei statistischen Entscheidungen - Prüfung statistischer Hypothesen: Der p-Wert, Einseitige und zweiseitige Fragestellungen, Statistische Signifikanz - Ablauf statistischer Tests

Ausgewählte statistische Tests

Parametrische Tests für normalverteilte Merkmale: Vergleich eines Mittelwerts mit einem bekannten Wert, Vergleich zweier Mittelwerte bei unabhängigen Stichproben, Vergleich zweier Mittelwerte bei verbundenen Stichproben, Äquivalenztests, Überprüfung der Voraussetzungen - Tests für ordinalskalierte Merkmale: Vergleich zweier Verteilungen bei unabhängigen Stichproben, Vergleich zweier Verteilungen für verbundene Stichproben - Tests für nominalskalierte (dichotome) Merkmale: Vergleich zweier Wahrscheinlichkeiten bei unabhängigen Stichproben, Vergleich zweier Wahrscheinlichkeiten bei verbundenen Stichproben

Analyse-Techniken für verschiedene Skalen

Analyse von quantitativen Zielgrößen: Korrelationsanalyse, Grafische Veranschaulichung bivariater Zusammenhänge, Produkt-Moment-Korrelation, Interpretation von Korrelationen - Einfache lineare Regression: Modell und Voraussetzungen, Schätzung der linearen Regressionsfunktion, Varianzzerlegung und Bestimmtheitsmaß, Konfidenzintervalle und Tests - Analyse von qualitativen Zielgrößen: Korrelationsanalyse ordinalskalierter und nominalskalierter Merkmale - Analyse von Zähldaten

Spezielle medizinische Analysen

Analyse von Überlebenszeiten: Links- und doppelt-zensiertes sowie Intervall-zensierte Beobachtungen, Überlebensfunktion, Hazard-Rate und Hazard-Funktion, Event-Time-Ratio, Weibull-Verteilung, Cox- und Weibull-Regression - Konkurrierende Risiken: Aalen-Johansen-Schätzer, Inzidenzfunktionen, Mehrstadienmodelle

Klassifikation und Prognose

Prävalenz - Fagan-Nomogramm - ROC-Kurven und Binormale ROC-Kurven - Prognostischer und prädiktiver Faktor

Spezielle Fragestellungen

Beurteilung der Zuverlässigkeit von Messungen: Intra-Raster, Inter-Raster, Test-Retest - Klinische Studien: Dosis-Wirkungs-Experiment, Einfluss von Gruppengrößen, Interaktionstest - Epidemiologische Studien: Confounding, Kohortenstudien, Fall-Kontroll-Studien - Meta-Analyse: Forest-Plot, Meta-Regressionsplot, Funnel-Plot

Dozent/in

Unser Trainer für Statistik und Data-Mining mit R Marco Skulschus studierte in Wuppertal und Paris Ökonomie und arbeitet schon seit mehr als 10 Jahren als Dozent, Fachbuch-Autor zum Thema Datenbanken, Datenanalyse und als Berater für statistische Analyse mit R. Teilnehmer/innen seiner R-Seminare sind Betriebswirte / Volkswirtschaftler, Ingenieure und Doktoranden, die für Statistik und Data Mining R einsetzen wollen.

Veröffentlichungen

  • Grundlagen empirische Sozialforschung (Comelio Medien )
    978-3-939701-23-1
  • System und Systematik von Fragebögen (Comelio Medien )
    978-3-939701-26-2
  • Oracle SQL (Comelio Medien )
    978-3-939701-41-5
  • SQL Server 2012: Data Mining und multivariate Verfahren (Comelio Medien )
    978-3-939701-85-9
  • SQL und relationale Datenbanken (Comelio Medien )
    978-3-939701-52-1

Projekte

nEr leitete ein mehrjähriges Forschungsprojekt zur Entwicklung eines Fragebogensystems mit ontologie-basiertem Datenmodell und innovativen Frage-Antwort-Darstellungen. Förderung durch das BMWi und Zusammenarbeit mit verschiedenen Universitäten.

Forschung

nAls Berater konzipiert Herr Skulschus Analysesysteme auf Basis von relationalen Datenbanken und entwickelt dann statistische Modelle und Analysen mit R-Programmierung. Zu seinen Kunden zählen Marktforschungsunternehmen, Marketing-Abteilungen sowie Abteilungen für die Qualitätssicherung und Prozessoptimierung oder auch Forschungseinrichtungen.