Oracle - Data Mining

Details
ID | 2757911 |
Duration | 3.0 days |
Methods | Lecture with examples and exercises. |
Prerequisites | Oracle SQL, PL / SQL |
Target group | Business Intelligence Developer |
Overview
Oracle Data Mining (ODM) provides powerful data mining functionality as native SQL functions within the Oracle Database. Oracle Data Mining enables users to discover new insights hidden in data and to leverage investments in Oracle Database technology. With Oracle Data Mining, you can build and apply predictive models that help you target your best customers, develop detailed customer profiles, and find and prevent fraud. This training provides you with an overview of the Oracle Data Mining architecture and shows you what kind of Data Mining algorithms you can use for your data analysis. You will get to know each algorithm´s principle and statistical-mathematical background before you see the algorithm being applied to DB data.
Dates
Zurzeit stehen keine offenen Termine zur Verfügung. Nutzen Sie alternativ die Inhouse‑Option.
Learn with customized examples and content—precisely tailored to your requirements.
Your benefits at a glance
- Flexible preferred date
- Customized content
- Intensive exchange
- High practical relevance

Comelio Media
Still looking for additional reading? Discover suitable specialist books in our catalog.
Services
- Lunch / catering
- Help with hotel / travel
- Comelio certificate
- Flexible: free cancellation up to one day before

Content
Data Mining and Oracle
Statistics, multivariate statistics and Data Mining - Data Mining cycle - Data preprocessing: Descriptive data aggregation, data cleansing, data integration and transformation - Data Reduction - Discretization and concept hierarchies - Data Mining and Business Intelligence: Databases, Data Warehouses and OLAP as the basis for Data Mining - Oracle architecture for Data Mining: database, Data Mining module and MS Excel add-inFactors and influences
Factor Analysis and Principal Component Analysis - Outlier AnalysisData Mining using Association analysis
Finding frequent patterns (Frequent Itemset Mining) - Apriori algorithm - association rules and association analysis - shopping basket analysisData Mining and Classification
Decision Trees: selection of attributes, tree pruning, deduction of rules, quality measures and comparison of models - Support Vector Machines: algorithms, building and using a modelData Mining and Probability Theory
Classification using logistic regression - Probability and Bayes´s Theorem - Naïve Bayes: algorithms, building and using a modelCluster Analysis
Introduction to Cluster Analysis - Similarity and distance measurement - Variants and basic techniques - Partitioning methods: k-Means Method - Hierarchical methods: agglomerative and divisive methodsInstructor
Marco Skulschus (born in Germany in 1978) studied economics in Wuppertal (Germany) and Paris (France) and wrote his master´s thesis about semantic data modeling. He started working as a lecturer and consultant in 2002.Publications
- Grundlagen empirische Sozialforschung (Comelio Medien)
978-3-939701-23-1 - System und Systematik von Fragebögen (Comelio Medien)
978-3-939701-26-2 - Oracle PL/SQL (Comelio Medien)
978-3-939701-40-8 - MS SQL Server - T-SQL Programmierung und Abfragen (Comelio Medien)
978-3-939701-69-9