Python - Data Mining

Details

ID 1252821
Dauer 2.0 Tage
Methoden Vortrag mit Beispielen und Übungen.
Vorwissen Allgemeine Kenntnisse der Mathematik
Zielgruppe Datenanalysten

Ziele

Data Mining verstehen

Verstehen Sie die Philosophie von Data Mining und den Data Mining-Kreislauf

Assoziationsanalyse einsetzen

Führen Sie eine Warenkorbanalyse durch und erkennen Sie wesentliche Häufungen

Daten klassifizieren

Nutzen Sie Entscheidungsbäume, Naïve Bayes und Bayes Netze, um Gruppen zu klassifizieren

Daten mit komplexen Modellen segmentieren

Verwenden Sie Künstliche Neuronale Netze und Support Vector Machines, um Gruppen zu trennen

Cluster-Analyse für Segmentierung von Daten nutzen

Erkennen Sie Gemeinsamkeiten und Gruppen in Ihren Daten

Übersicht

Data Mining übertrifft einfache Analysetechniken an Wirkungsweise und Ergebnissen und bietet eine Methodik, die auf erweiterten statistischen und algorithmischen Konzepten des maschinellen Lernens beruht. Es unterstützt die Entwicklung und Gewinnung von wertvollem Unternehmenswissen anhand komplexer Analyseverfahren. Dieses Python-Seminar macht Sie mit den Konzepten von Data Mining vertraut und hilft Ihnen bei der Entscheidung und Bewertung in Projekten, die Data Mining einführen helfen. Das Seminar zeigt den Teilnehmern aufgrund von Theorie und Beispielen in Python, welche typischen Analyseverfahren zur Verfügung stehen und wie gängige Algorithmen in diesen Verfahren mit Python funktionieren. Es sind grundlegende Kenntnisse der Mathematik und Statistik notwendig, die bei Bedarf allerdings auch an den entsprechenden Stellen im Seminar noch einmal wiederholt werden können. Die Theorie wird anhand von Vorträgen und Diskussionen vermittelt und durch praktische Python-Programmierung ergänzt.

Termine

OPEN
INHOUSE

Zurzeit stehen keine offenen Termine zur Verfügung. Nutzen Sie alternativ die Inhouse‑Option.

Lernen Sie anhand maßgeschneiderter Beispiele und Inhalte – passgenau für Ihre Anforderungen.

Ihre Vorteile im Überblick

  • Flexibles Wunschdatum
  • Maßgeschneiderte Inhalte
  • Intensiver Austausch
  • Hoher Praxisbezug

Themen

  • Data Mining-Ansatz und Philosophie verstehen
  • Assoziationsanalyse für einfache Mustererkennung nutzen
  • Daten klassifizieren mit Entscheidungsbäumen, Naïve Bayes und Bayes Netzen
  • Daten klassifizieren mit Künstlichen Neuronalen Netzen und Support Vector Machines
  • Cluster-Analyse für Segmentierung von Daten nutzen

Beschreibung

Nutzen Sie Data Mining in Python, um Muster in Daten zu erkennen wie bspw. Gruppen, wichtige Variablen oder Zusammenhänge, die für Klassifikation und Vorhersage genutzt werden können. Lernen Sie das Python-Paket Scikit-Learn kennen, mit dem Sie maschinelles Lernen konkret umsetzen können.

Services

  • Mittagessen / Catering
  • Hilfe bei Hotel / Anreise
  • Comelio-Zertifikat
  • Flexibel: Bis einen Tag vorher kostenlos stornieren
Service-Kaffeekanne

Comelio Medien

Noch auf der Suche nach weiterführender Literatur? Entdecken Sie passende Fachbücher in unserem Katalog.

Inhalt

Data Mining-Grundlagen

Statistik, multivariate Statistik und Data Mining – Data Mining-Kreislauf - Daten-Vorverarbeitung: Beschreibende Datenaggregation, Datenbereinigung, Datenintegration und –transformation – Datenreduktion – Diskretisierung und Konzept-Hierarchien – Data Mining in Python mit dem Python-Paket Scikit-Learn

Data Mining mit der Assoziationsanalyse

Suchen von häufigen Kombinationen (Frequent Itemset Mining) – Apriori-Algorithmus - Assoziationsregeln und Assoziationsanalyse - Warenkorbanalyse

Data Mining mit Entscheidungsbäumen

Ableitung von Entscheidungsbäumen – Auswahl von Attributen – Beschneidung von Bäumen – Ableitung von Regeln - Gütemaße und Vergleich von Modellen

Data Mining mit Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie und Bayes Theorem –Naïve Bayes-Algorithmus – Bayes Netze

Fortgeschrittene Data Mining-Verfahren für Klassifikation

Künstliche neuronale Netze und der Backpropagation-Algorithmus - Support Vector Machines für linear und nicht-linear trennbare Daten – Klassifikation mit Assoziationsanalyse – Lazy und Eager Learners

Cluster-Analyse

Einführung in die Cluster Analyse – Ähnlichkeits- und Distanzmessung - Varianten und grundlegende Techniken – Partitionierende Methoden: k-Means-Verfahren - Hierarchische Methoden: agglomerative und divisive Verfahren – Weitere Verfahren: Dichte- und Grid-basierte Methoden

Dozent/in

Unser Python-Trainer Marco Skulschus studierte in Wuppertal und Paris Ökonomie und arbeitet schon seit mehr als 10 Jahren als Dozent, Berater und auch Fachbuch-Autor zum Thema Datenbanken, statistische Datenanalyse, Data Mining und Python. Er unterrichtet deskriptive und induktive Statistik, multivariate Verfahren und Data Mining für die Bereiche Controlling und Marketing bzw. Marktforschung.

Veröffentlichungen

  • Grundlagen empirische Sozialforschung (Comelio Medien )
    978-3-939701-23-1
  • System und Systematik von Fragebögen (Comelio Medien )
    978-3-939701-26-2

Projekte

Er leitete ein mehrjähriges Forschungsprojekt zur Entwicklung eines Fragebogensystems mit ontologie-basiertem Datenmodell und innovativen Frage-Antwort-Darstellungen. Förderung durch das BMWi und Zusammenarbeit mit verschiedenen Universitäten.

Forschung

Im Bereich statistischer Datenanalyse führt Herr Skulschus als Berater und Projektleiter auch Projekte durch, bei denen Python zum Einsatz kommt oder mit individueller Software-Entwicklung in Java und .NET auf Datenbank-Basis Analyse- und Reporting-Lösungen entstehen.